Heterogeneous Workers, Trade, and Migration

Inga Heiland
Ifo Institute, Munich

Wilhelm Kohler University of Tuebingen

9th FIW-Research Conference "International Economics" University of Vienna

Dec. 1-2, 2016

Worker heterogeneity: type vs. level of skills

Everybody knows: people have different levels of skills

- Explanation of wage inequality
- Log-supermodularity ⇒ positive assortative matching
- Reformulating law of comparative advantage (Ohnsorge & Trefler, 2007, Costinot, 2009, Costinot & Vogel, 2010,2015)
- Trade potentially increases the quality of positive assortative matching (Davidson et al., 2012,2014)
- International migration of people with different levels of skills between different economies

Worker heterogeneity: type vs. level of skills

Everybody knows ...

- ... people with the same level of skills have different types of skills
- ... different activities/firms ideally require different types of skills
- ... skill-types are not fully specific to activities/firms
 - ⇒ firms employ people who don't perfectly fit their ideal skill-type
- ... people with the same level of skills earn different incomes

Relatively little theoretical analysis of horizontal worker heterogeneity

This presentation:

- General equilibrium with horizontal worker heterogeneity
 - ⇒ endogenous monopsony power on the labor market
 - \Rightarrow endogenous average quality of firm-worker matches
- Consequences for trade (with closed labor markets):
 - Exit of firms ⇒ higher degree of monopsony power
 - . . . ⇒ poorer average quality of firm-worker matches (lower aggregate productivity)
- Consequences for migration (with open goods markets):
 - Better firm-worker matches through "cross-border" hiring
 - Explanation of two-way migration between similar countries

Key messages

Model used:

- Krugman-type, featuring scale and variety effects
- Adding horizontal skill-differentiation of workers
- Modeling entry game among firms including endogenous choice of ideal worker type

Questions / Answers:

- Gains from trade? / YES
- Gains from (partial) trade liberalization? / AMBIGUOUS
- Incentives for, and gains from, migration? / YES, YES
- Gains from (partial) integration of labor markets? / YES

Literature background

Trade:

- Scale, variety, competitive effects: Krugman (1979), ... Arkolakis et al. (2012), Mrázová & Neary (2013,2014)
- Entry and location game: Vogel (2008), Economides (1989)
- Offshoring of specific inputs: Grossman & Helpman (2005)
- Worker heterogeneity and agglomeration: Amiti & Pissarides (2005)
- Worker heterogeneity and sorting/matching: Ohnsorge & Trefler (2007), Costinot & Vogel (2010), Davidson et al. (2008,2012,2014)

Migration:

- Complementarity to trade: Markusen (1983), . . . Felbermayr et al. (2014)
- Two-way migration between similar countries: Fan & Stark (2011), Kreickemeier & Wrona (2013)

Road ahead

- 1 Introduction and motivation
- 2 Modeling framework
- 3 Symmetric autarky equilibrium
- 4 Trading equilibrium
- 5 Trade cum migration equilibrium
- 6 Conclusions

Modeling approach - overview

What do I mean by **skill-type**?

- Production: "myriads" of tasks
- Skill-type: specific combination of abilities to perform different types of tasks innate, or acquired
- "Myriads" of exogenous skill-types among workers
- Horizontal differentiation: every worker has same average "skill-type distance" to others
- Entry of firms: endogenous optimal skill-type ⇒
 - skill-type distance between firms
 - skill-type match between firms and workers

Modeling approach - overview

Structure:

- Given labor endowment, distributed over continuous "skill-circle"
 [borrowing from Amiti & Pissarides (2005)]
- Technology: only labor, fixed cost plus variable cost
- Goods market: single sector, translog expenditure system (love of variety)
- "Arctic" model: Iceberg trade cost, iceberg migration cost

Behavior: two-stage game

- Firms stage I: free entry → zero profits
 → number of firms, "distance pattern" on skill-circle
- Firms stage II: Bertrand pricing on goods and labor markets
- Workers: inelastic labor supply, matching with firms

Firm neighborhoods and worker-firm matching

Important notation:

- Mass of labor supply L distributed over "skill-circle" with circumference 2H
- N: number of firms entering indexed by i
- m_i : N-dimensional vector of distances between firms $(2m_{i-1,i}, 2m_{i,i+1}, \ldots, 2m_{i-2,i-1})$ i+1: first right-hand neighbor i-1: first left-hand neighbor, etc. i-1=N if $i=1,\ldots$, and i+1=1 if i=N
- w_i firm i's posted wage per efficiency unit
- w_{-i} : N-1 vector of wage rates set by all firms other than i first element: first right-hand neighbor final element: first left-hand neighbor, etc.

Sorting of workers into neighboring firms

- income of worker at skill distance d from i: $w_i f[d]$
- -f(0)=1, f'<0, f'(0)=0, $f'' < 0, \ f(d) = f(-d)$
- workers know skill distances
- firms know skill distribution
- free entry → job surplus appropriated by workers

Firm i's "skill reach":

$$d_{i,r} = d_r ig[w_i, w_{-i}, m_i ig]$$
 determined by worker indifference condition

Firm i's labor supply

Labor supply - right and left:

$$L^{S,r} \quad = \quad \int\limits_0^{d_r[\pmb{w}_i,\pmb{w}_{-i},\pmb{m}_i]} \frac{L}{2H} f[d] \mathrm{d}d$$
 analogously for $L^{S,\ell} \quad = \quad \cdots$

Total labor supply:

$$L^{S}[\boldsymbol{w}_{i}, \boldsymbol{w}_{-i}, \boldsymbol{m}_{i}, L, H] = \begin{cases} L^{S,\ell} + L^{S,r} & \text{if } d_{\ell} \leq -d_{r} \\ 0 & \text{otherwise} \end{cases}$$
 (1)

with elasticity $\eta > 0$ and $\eta < \infty$, depending on $w_i, \boldsymbol{w}_{-i}, \boldsymbol{m}_i$

Stage I $\Rightarrow m_i$ and N

Stage II: Bertrand price and wage setting, conditional on $m_{ij}N$:

- First order condition - double markup on w_i :

$$p_i = \frac{\varepsilon_i}{\varepsilon_i - 1} \frac{\eta_i[\cdot] + 1}{\eta_i[\cdot]} w_i \beta \tag{2}$$

$$\frac{\varepsilon_i}{\varepsilon_i - 1} = \mathcal{W}\left[\underbrace{\frac{\eta_i[\cdot]}{w_i(\eta_i[\cdot] + 1)} \exp\left\{1 + \frac{1}{\gamma N} + \overline{\ln p}\right\}}_{}\right]$$
 (3)

market environment

$$\mathcal{W}[z]$$
: solution to $xe^x = z \quad (\mathcal{W}' > 0)$

- Firm's labor supply \Rightarrow best response function for w_i :

$$w_i = w_i [\mathbf{w}_{-i}, \mathbf{m}_i, N, \overline{\ln p}, Y, L, H]$$
(4)

Stage II equilibrium

Nash Equilibrium:

$$w_i^e = w^e[\boldsymbol{m}_i, N, L, H] \tag{5}$$

$$p_i^e = p^e[\boldsymbol{m}_i, N, L, H] \tag{6}$$

$$\pi_i^e = \pi^e \left[\boldsymbol{m}_i, N, L, H \right]$$
 (7)
for $i = 1, \dots, N$
and (potentially) asymmetric \boldsymbol{m}_i

Lemma (stage II equilibrium - pricing)

Existence of unique stage II equilibrium, if the profit function is quasiconcave and β is low enough.

Stage I: Entry and choice of "technology"

- Challenge: consistent story about entry where symmetric dispersion of firms around skill-circle is the only equilibrium
- Game of incomplete information: uncertainty about m_i
- Beliefs about conceivable m_i , conditional on N
- Decision rule for all $i=1\dots \bar{N}$ (potential entrants, with zero oo)

$$\mathcal{I}_i = \left\{ \begin{array}{ll} 1 & \text{if} & \mathbb{E}_i \big[\pi^e[\boldsymbol{m}_i, N] \big] \geq 0 \text{ and } \nu_i[N] > 0 \\ 0 & \text{otherwise} \end{array} \right.$$

- $\nu_i[N]$: belief on number of firms entering
- Best response function $\mathcal{I}_i[N]$

Stage I: Entry and choice of "technology"

- Structural symmetry ⇒ symmetric beliefs
- Equilibrium: equilibrium number of entrants N^e satisfies

a):
$$\sum_{i=1}^{\bar{N}} \mathcal{I}_i[N^e] \ge N^e \tag{8}$$

b) for any
$$ilde{N}>N^e$$
: $\sum_{i=1}^{ar{N}}\mathcal{I}_i[ilde{N}]=0$ (9)

- a: Assuming N^e entrants, all will want to enter
- b: Assuming more than N^e entrants, none will want to enter

Lemma (stage I equilibrium - entry and skill-type choice)

Consistent beliefs, sufficiently low β

⇒ unique, symmetric stage I equilibrium with

$$m_{i-1} = m_{i+1} = m; \quad m^e = H/N^e$$

Symmetry: - $\ln p_i = \overline{\ln p}$, and $w_i = \overline{w}$ - Number of firms N[m] := H/m

Pricing equation (normalizing w = 1):

$$p[m] = \rho[m]\psi[m]\beta \tag{10}$$

- goods price markup

$$\rho[m] := 1 + \frac{1}{\gamma N[m]} \quad \text{with } \rho'[m] > 0$$
(11)

wage markup

$$\psi[m] := \frac{\eta[m] + 1}{n[m]} \quad \text{with } \psi'[m] > 0 \tag{12}$$

Symmetric autarky equilibrium: productivity and profits

Average productivity (quality of worker-firm-match):

$$\theta[m] := \frac{1}{m} \int_0^m f[d] dd \quad \text{with } \theta'[m] < 0 \tag{13}$$

Zero profits plus full labor market clearing (setting $\beta = 1$)

$$p[m] = g[m] := \frac{L\theta[m]}{L\theta[m] - \alpha N[m]} \quad \text{with } g'[m] < 0 \qquad (14)$$

Pricing rule plus zero profits:

$$g[m] = \rho[m]\psi[m] \tag{15}$$

 \rightarrow endogenous m (and thus N)

Distortions on entry decision

Firms ignore

- \bullet positive variety effect of entry (insufficient entry, m too large)
- ② ... negative "business stealing" effect (excess entry)
- 3 ... positive productivity effect (insufficient entry)
- 4 ... negative effect on markups (excess entry)
 - Standard CES model: 1 and 2 offset each other
 - \rightarrow efficient entry
 - This model: net effect is excess entry
 - ... converges to Krugman model as $H \to 0$ (zero heterogeneity)

Welfare under autarky

- Worker heterogeneity aggregate welfare (effects)?
- Ex ante: workers regard each point on the circle as being equally likely to become an ideal type for themselves
- Expected utility of a worker

$$\ln V = \ln \theta[m] - \left(\frac{1}{2\gamma N[m]} + \ln p[m]\right) \tag{16}$$

- θ and N both falling in m
- But p is not unambiguous in m depends on the type of shock considered

Globalization - overview of propositions

Propositions:

- Gains from trade theorem survives
- 2 Piecemeal trade liberalization: welfare non-monotonic in τ
- 3 Integrating labor markets: beneficial even for prohibitive $\bar{\lambda}$
- 4 Piecemeal integration of labor markets: unambiguously welfare-increasing

Trading equilibrium

Proposition (gains from trade – extensive margin)

Opening up to free trade among k symmetric countries has the following effects relative to an autarky equilibrium:

- Exit of firms in each country, but the total number of varieties increases.
- 2 There is a lower price markup coupled with a higher wage markup, but goods prices are unambiguously lower.
- 3 The average matching quality falls, so does average income.
- Real income and aggregate welfare increase (compensation argument).
- Some gain, some lose, but wage inequality increases.

Trading equilibrium

Proposition (gains from trade – intensive margin)

For two identical countries in a trading equilibrium, a decrease in iceberg trade cost au within the non-prohibitive range $au \in [1, \bar{ au})$

has the following effects:

- 1 There is exit of firms in each country.
- Wage markups rise in each country.
- The price of imported varieties falls.
- **1** The change in the price of domestic goods is ambiguous: falling at low, and increasing at high initial levels of τ .
- **Solution Aggregate welfare is ambiguous:** rising for sufficiently low, and falling for sufficiently high initial levels of τ .
- Wage inequality rises.

Trade liberalization – intensive margin

Intuition:

- Symmetric reduction of au no welfare-increasing "formula" why?
- Answer: $\Delta \tau < 0$ more trade \Rightarrow more labor for τ
- → Firm exit: higher wage distortion, lower matching quality
 - This effect is stronger, the higher the initial level of au
- → Ambiguous response of domestic prices

Utility of worker with average income:

$$\ln V = \ln \theta[m] - \ln P[N(m), p, p^*]$$

$$\widehat{V} = \underbrace{\left(\frac{\partial \ln \theta}{\partial \ln N} - \frac{\partial \ln P}{\partial \ln N}\right) \widehat{N}}_{\leq 0} \underbrace{-N\delta \widehat{p}}_{>0} \underbrace{-N^*\delta^* \widehat{p}^*}_{>0}$$

$$f[d] = 1 - d^2, \alpha = 1, \beta = 1, L = 100, H = 1, \gamma = 1.5$$

International migration

Symmetric countries - any incentive for international migration?

- Macro-level: equal average worker incomes ⇒ no incentive
- Micro-level: integrated labor markets
 - ⇒ better skill-type match in other country (except for knife edge case)
 - ⇒ re-sorting of workers into home and foreign firms
 - ⇒ relocation of firms in all countries
- Analysis of migration: two-stage game with cross-border hiring/sorting
- Theory of two-way migration between similar countries

Modeling international migration

Migration: new entry/sorting game with cross-border hiring

- Productivity of migrant at skill distance d:

$$(1-\lambda)f[d] \quad \text{with } \lambda \ \in (0,\bar{\lambda}), \bar{\lambda} \leq 1$$

- Effective mass of labor on the skill circle increases: $(2 \lambda)L$
- Symmetric countries with equal worker heterogeneity and labor force
- "Micro-incentive" for migration also with perfectly integrated goods markets
- Trade cum migration: free trade plus costly migration
- Gains from migration: better skill-type matches / lower monopsony power

Labor supply with alternating location pattern

Equilibrium with alternating location pattern:

- Alternating: any one firm facing two neighbors from other country
- Existence and uniqueness: extension of above Lemma
- Using 2m to denote distance between two firms from same country

Employment of natives and migrants:

- Skill reach for natives $d_i^n[w_i, w^*, m, \lambda]$ and migrants $d_i^m[\cdot]$:

$$w_i f[d_i^n] = w^* f[m - d_i^n] (1 - \lambda)$$
(17)

$$w_i f[d_i^m] = w^* f[m - d_i^m] \frac{1}{1 - \lambda}$$
 (18)

- Prohibitive migration cost $\bar{\lambda}$ determined by $d_i^n = m \Rightarrow d_i^m = 0$

Labor supply with alternating location pattern

Integration of labor markets with prohibitive λ

Proposition (potential migration)

Compared to a free trade equilibrium with national labor markets, a zero profits, second stage equilibrium with free trade and potentially integrated labor markets (prohibitively high level of the migration cost) between two symmetric countries featuring a symmetric alternating pattern of firm locations involves

- a lower number of firms and
- a welfare level which is unambiguously higher

in each country.

Intuition: Excess entry alleviated through potential migration

However, this is no no Nash equilibrium in the first stage (entry) of the game.

Proposition (labor market integration)

In a "trade cum migration" equilibrium of the two-stage game with two symmetric countries, piecemeal integration of labor markets through a marginal reduction in the cost of migration

- lowers prices of all goods
- raises welfare in both countries,
- but has an ambiguous effect on the number of firms

in both countries.

General equilibrium adjustments: $\hat{N} \leq 0$, $\hat{p} < 0$, $(\theta/p) > 0$

Utility of worker with average income:

$$\hat{V} = \widehat{(\theta/p)} + \frac{1}{2\gamma N} \hat{N} + \frac{1}{2\gamma N} \hat{N}$$

From free trade to trade cum migration

Summary and conclusions

- Trade liberalization has adverse labor market effects:
 - Lower quality of matches, higher monopsony power on labor market
 - Gains from trade survive, but with increase wage inequality
 - Piecemeal trade liberalization welfare increasing only for low trade cost
- ② Migration mitigates these labor market effects:
 - Integrating labor markets is beneficial even at the margin of prohibitive migration cost
 - A decrease in migration cost is unambiguously welfare enhancing
- 3 Two-way migration arises as a consequence of skill diversity
- Migration and trade are complements
- S An "integrated world equilibrium" can only be reached if goods and labor markets are fully integrated

Heterogeneous Workers, Trade, and Migration

Inga Heiland
Ifo Institute, Munich

Wilhelm Kohler University of Tuebingen

9th FIW-Research Conference "International Economics" University of Vienna

Dec. 1-2, 2016

Indirect utility of individual k with income y_k

$$ln V_k = ln y_k - ln P[p]$$

with

$$\ln P[p] = \frac{1}{2\gamma N} + \frac{1}{N} \sum_{i=1}^{N} \ln p_i + \frac{\gamma}{2N} \sum_{i=1}^{N} \sum_{j=1}^{N} \ln p_i (\ln p_j - \ln p_i)$$

Demand

$$x_{ik}[p, y_k] = \frac{\partial \ln P[p]}{\partial \ln p_i} \frac{y_k}{p_i} = \delta_i \frac{y_k}{p_i} \quad \text{with} \quad \delta_i = \frac{1}{N} + \gamma \left(\frac{1}{N} \sum_{j=1}^N \ln p_j - \ln p_i \right)$$