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Abstract

This paper proposes a new statistical framework inherited from the traditional credit-scoring

literature, to evaluate currency crises Early Warning System (EWS). Applied to evaluate

for the predictive power of panel logit and Markov frameworks, it results that the panel

logit is outperforming the Markov switching ones. Furthermore, the introduction of forward

looking variables clearly improves the forecasting properties of the EWS. It thus confirms

the adequacy of the second generation crisis models in explaining the occurrence of crises.
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1 Introduction

The recent sub-prime crisis has renewed interest for financial crises. In a prophetic paper,

Bordo et al. (2001), distinguishing 4 types of financial crises (banking, currency, twin and all

crises), already shown that financial crises, in particular currency ones, would become more

frequent since the collapse of the Bretton-Woods system in emerging as well as developed

countries. This stylized fact should stimulate economists in improving the quality of Early

Warning Systems (hereafter EWS), set up to ring before the occurrence of a currency crisis.

Such an alarm system constitutes the only tool available for authorities to implement optimal

policies to prevent or at least attenuate the impact of a crisis.

The first EWS was proposed by Kaminsky, Lizondo and Reinhart (1998) (KLR hereafter)

using a signalling approach. They use a large database of 15 indicator variables covering the

external position, the financial sector, the real sector, the institutional structure and the

fiscal policy of a particular country. An indicator (i) will signal a crisis, when it will exceed

a particular cut-off point (Ci). The estimation of this threshold is at the core of such an

analysis. KLR determine it in order to minimize the noise-to-signal ratio (NSR hereafter)

i.e. such that the probability of occurrence of a crisis becomes maximum after exceeding the

cut-off point. The EWS for the country j is then built as the weighting-sum of the individual

indicators, the weights being in the inverse of (NSR).

Berg and Patillo (1999) (BP hereafter) compare this signalling method to a panel logit

model. It turns out that their in-sample forecasts dominate KLR ones, when considering

measures similar to the mean square error, as the quadratic probability score (QPS) and log

probability score (LPS), as well as NSR. It thus paved the way to a huge number of empirical

studies (Kumar et al., 2003, Fuertes and Kalotychou, 2007, Berg et al., 2008 to name but a

few). Nevertheless, in BP and all other studies thresholds beyond which crisis are detected

are exogenously fixed (25% and 50%) and no formal statistical framework is proposed to test

for the improvement of the NtoRS (a lower one is enough to conclude about the superiority

of the model).

Moreover, they do not exploit the fact that turmoils refer to specific states structurally

different from the one governed by tranquil periods. Hence, Bussiere and Fratzscher (2006)

propose a multinomial logit EWS1, whereas other studies use Markov-Switching models (see

Abiad, 2003 for a survey or Martinez-Peria, 2002 and Fratzcher, 2003). The evaluation of

these models is similar to the one proposed in BP, as it relies on the NSR. The determination

of the optimal cut-off point is not explicitly tackled, even if Harding and Pagan (2006) showed

that it is endogenously determined. Nevertheless, contrary to BP, there is no raison why it

should lead to a minimum NRS.

1They first only consider two regimes (turmoil and tranquil periods) but also associate a third regime to
the post-crisis period, justifying it with recovery specificities.
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Hence, even if these approaches seem to be different, they suffer from similar drawbacks

related to their evaluation. First, they all use the NSR measure as in fine comparison crite-

rion. As noticed by Bussiere and Fratzscher (2006) (p.957) this approach has a clear problem.

If the cut-off point decreases, it will lead to a better detection of the coming crises (i.e. the

type 1 error will decrease), but at the same time it will lead to increase the number of false

alarms (i.e. type 2 error will increase). To summarize, a more efficient detection of future

crises will be at the cost of more frequent false alarms, which may have an efficiency cost in

terms of economic policy. Second, no statistical inference is available to test for the forecas-

ting superiority of an EWS compared to another one. It does represent an important issue

in light of the previous remark: Does a model exhibiting lower type 1 but higher type 2 error

really outperforms the others ?

This paper proposes to tackle both problems by developing a new statistical framework

to evaluate EWS. Inherited from the traditional credit-scoring measure (Basel Committee

on Banking Supervision, 2005 and Lambert and Lipkovich, 2008 inter alii), it goes beyond

the simple analysis of the NSR, and proposes to determine the optimal threshold for each

country, relying on the sensitivity-specificity plot and on the accuracy measures. Similarly,

we adapt the most important credit-scoring criteria (e.g. AUC, Kuiper Score, Pietra Index,

Bayesian Error Rate) using them as evaluating criteria to gauge the forecasting performance

of the models. Finally, inference for nested and non-nested hypothesis is developed to identify

the optimal specification.

In an empirical part, this framework is implemented to compare the forecasting ability of

a fixed effects panel logit and a country-by-country Markov switching model for six Asian and

six Latin-American countries. Moreover, the role of forward-looking variables (which have a

key role for the theoretical second generation models, see Obstfeld, 1996) is also investigated

in both models. Anticipating on our conclusion, it appears that the logit model with market

expectation variables works better than the other logit or Markov specifications ; Based on

optimally identified thresholds, this model forecasts correctly more than 67.9% of crises and

61% of calm periods in each of the twelve countries, and it is robust to some changes in the

construction of the dependent variable like the modification of the pressure index we use or

the modification of the crisis definition. In such a framework, the performance assessment

criteria proposed and the comparison tests work much better than the usual methods.

This paper is organized as follows: the panel logit as well as the Markov Switching EWS

models are presented in Section 2. Section 3 presents our new evaluation framework. The

determination of the optimal cut-off as well as the comparison tests are developed. The

database as well as the method used to date currency crises are scrutinized in section 4.

Empirical results are exposed in section 5 where models are compared. Section 6 concludes.



2 EWS Models : Panel logit and Markov Switching

In this section, the two most well-known EWS models (Panel logit and Markov Swit-

ching) are presented. They will be used in an empirical section to apply our new validation

framework.

2.1 Panel Logit Model

Following the seminal paper of BP, the fixed-effects panel logit model seems to constitute

the adequate model to build an EWS. In a recent paper, Berg et al. (2008) do not advice

to include all the countries available in the panel, but instead to consider EWS specific

to homogenous clusters (determined in advance). The EWS for countries which cannot be

included in any clusters, will rely on simple time series logit regressions.

Let n = 1, ..., N be the number of countries and tn = 1, ..., Tn the number of time periods

considered for the nth country. The dependent variable yn,tn,j is a binary variable taking the

value of 1 if at least a crisis occurs within j periods ahead and 0 if no crisis occurs. j is the

forecast horizon and will be removed from the notation for ease of simplicity.

Using a logistic cumulative distribution function, we obtain a conditional logit model for

each cluster (Hsiao, 2003):

Pr(yn,tn = 1) =
exp(β

′
xn,tn + fn)

1 + exp(β ′xn,tn + fn)
∀n ∈ Ωh, (1)

where Ωh is the hth cluster, h ∈ {1, ..., H}, and dim(Ωh) = Nh, so that
∑H

h=1 Nh = N ,

dim(Ωh) is the number of countries in the hth cluster and where fn represents the fixed

effects (the constant term specific to each country).2

This panel so specified exhibits several problems leading to the presence of serial corre-

lation. First, Berg and Coke (2000) shown that when the horizon forecast is larger than 1, it

leads to autocorrelation in the crisis variable. Moreover, Harding and Pagan (2006) shown

that including a constructed binary variables in a model (as it is the case for yn,tn) always

leads to serial correlation problem. A robust variance-covariance matrix is considered via the

sandwich estimator (Williams, 2000).3

Nevertheless, the binary choice models have some major drawbacks. First of all, the

dependent variable is a binary one, requiring an a priori dating of crisis periods, which is

always challenging. Secondly, the threshold used to identify the crisis from non-crisis periods

are arbitrarily chosen. Thirdly, a part of the information is lost when the continuous variable

2In the case of time-series models there are no individual effects and we can estimate a standard uncon-
ditional bivariate logit. The estimation is straightforward.

3This method is described in Appendix 1.



is transformed into a qualitative one.

2.2 Markov Switching Model

Markov Switching models do not require prior dating of crises and imposes fewer distri-

butional hypotheses.

Proposed first by Hamilton (1988, 1995) in order to analyse the stance of business cycles,

it assumes regime specific relationship between variables. The transition between states is

endogenous and depends on fixed transition probabilities4 which are estimated via a modified

Maximum likelihood approach. The model used in the paper allows for change in regime in

the regressor but also in the volatility (see Abiad, 2003) and has the following form :

KLRmt = µt(St/=t) + β(St/=t)xt(St/=t) + εt(St/=t), (2)

where KLRmt is a market pressure index vector, xt represents the matrix of economic

variables, µ is the intercept, εt is i.i.d.(0, σ2
St) and =t the information set available at time t.

St is a latent variable representing the regime, which follows a first order two states Markov

chain {St}Tt=1. St = 0 if there is a crisis and St = 1 if not. For the ex-post identification

of the two regimes, Abiad (2003) considers that the crisis (resp. tranquil) regime is the one

having a higher (resp. lower) volatility.

The constant transition probabilities matrix between the regimes from time t− 1 to t is:

P =

P00 P10

P01 P11

 =

 P00 1− P11

1− P00 P11

 , (3)

The model is estimated by Maximum Likelihood method, as described by Hamilton

(1995). The initial values of the parameters are obtained from Ordinary Least Squares re-

gressions. For each state the conditional mean and difference to the mean are computed.

Next, the normal probability density for each regime ηt can be obtained. Given the initial

values of the parameters (µ0, β0) and of the conditional probability for each regime ξ0 = 1/2,

we can iterate from t = 1 to T on the following equations:

ξ̂t|t =
ξ̂

′

t|t−1 ◦ η
′
t

1′(ξ̂
′
t|t−1 ◦ η

′
t)

(4)

ξ̂t|t−1 = P ξ̂
′

t−1|t−1, (5)

4Time-Varying transition Probabilities have been proposed by Diebold, Weinbach and Lee (1994) but are
not considered in the paper.



where ◦ denotes element-by-element multiplication, and 1 is the unit vector (column).

The first equation gives the filtered probabilities5 Pr(St = i|Ωt) for each state, while

the second one shows the forecasted probabilities of being in a state in the next period

Pr(St+1 = i|Ωt).

The conditional normal density ηt and the filtered probabilities allow to compute the

conditional log likelihood of the observed data:

L(θ) =
T∑
t=1

log(1
′
(ξ̂t|t−1 ◦ ηt)). (6)

Since our objective is to compare the results of the logit and Markov methods, we need

to obtain a series of j month ahead forecasts. More precisely, we estimate the probability of

observing at least one crisis in the next j periods as follows (Arias and Erlandsson, 2005): 6

Pr(St+1...t+j = 0|=t) = 1− Pr(St+1...t+j = 1|=t) (7)

= 1− {[P01P
(j−1)
11 Pr(St = 0|=t)] + [P j

11Pr(St = 1|=t)]}. (8)

3 A new framework to evaluate EWS models

The evaluation of EWS is particularly important since several models are proposed.

However, most of the studies comply with only a few performance assessment procedures

based on an arbitrary choice of cut-off and does not offer a framework allowing for statistical

inference.

In this section, we offer a new evaluation framework borrowed from the credit-scoring

literature. In a first step, assessment criteria are presented and used to determine optimal

cut-off points. In a second step, evaluation measure are developed in order to gauge the

forecasting quality of the models. Finally a battery of tests is presented to test for the best

performing model.

3.1 Performance Assessment and optimal cut-off

This section presents the criteria used to compare the crises probabilities obtained from

the EWS model with the actual occurrence of crises within a certain horizon. To be more

precise, the EWS models we estimate output crisis probabilities, and in order to shift from

these probabilities to crisis forecasts, we have to define an optimal threshold (cut-off) which

5Often we are interested in forming an inference about the true regime at date t based on observations
obtained through a later date T , denoted ξt|T . These are referred to as ”smoothed” probabilities Pr(St =
i|ΩT ) and they are given by Kim’s algorithm (1994): ξt|T = ξt+1|T ξt|tP/ξt+1|t.

6See Krolzig (2000) for a description of the other estimation methods.
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discriminates between predicted crisis periods and predicted calm periods. It is known that

if the probability of a crisis oversteps the cut-off, it issues a signal of a forthcoming crisis.

Moreover, the lower the threshold, the more signals the model will send (i.e. error of type 1

will decrease), but at the same time, the number of wrong signals rises (i.e. error of type 2 will

increase). Conversely, using a higher threshold level reduces the number of wrong signals, but

the number of missing crisis signals increases. Therefore, we can define an indicator variable

of predicted occurrence of crisis as following:

Ît =

1, ifPt > C

0, otherwise
, (9)

where C represents a fixed cut-off.

We have decided to solve this trade-off by following the methodology used in credit-

scoring (Basel Committee on Banking Supervision, 2005). In fact, several evaluation criteria

of predictive ability are available in the credit-scoring literature, but we concentrate on the

most important ones: Kuiper’s score, Quadratic Probability Score, Log Probability Score,

The area under the ROC curve (AUC), Pietra Index, and Bayesian Error.

First, we begin with some general concepts and two methods we use to determine the

optimum threshold for each country. Finally, we can introduce the performance assessment

criteria.

3.1.1 Optimal Cut-off Identification

For a given value of the cut-off C, where C ∈ [0, 1], Table 1 reports the link between the

observed (yt) and predicted (Ît) conditions in the following matrix:

Tab. 1 – True versus predicted occurrence of crises

True value

Crisis No crisis Total

Crisis True Positive (TP(C)) False Positive (FP(C)) All predicted crisis

Predicted result No crisis False Negative (FN(C)) True Negative (TN(C)) All predicted non-crisis

Total All true crisis (ND) All non-crises (NND) T (sample size)

Note : For a given cut-off we count the number of crises correctly identified and the number of non-crises well predicted by
the model (the first diagonal elements of the matrix) and the misidentified crisis and respectively non-crisis (the off diagonal
elements). The number of real crises/non-crises periods lies on the ’total’ row, while the number of predicted crises/non-crises
lies on the ’total’ column.

BP consider as the only objective criteria the NSR, defined as :

NSR(C) =
FP (C)

TP (C)
. (10)
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The optimal threshold (C∗) is obtained as the value that minimized NSR(C) (see BP and

KLR).

It is nevertheless possible to go deeper, defining first the hit rate (sensitivity) as

HR(C) =
TP (C)

ND

, (11)

where TP (C) is the number of crisis predicted correctly (hits) using a cut-off equal to C ,

and ND is the total number of crisis in the sample. At the same time, the false alarm rate

(1− specificity) is defined as

FAR(C) =
FP (C)

NND

, (12)

where FP (C) is the number of false alarms (false signals), and NND is the total number

of non-crisis periods. The optimal cut-off rate is determined as to maximize simultaneously

and conditionaly sensitivity and specificity. (see Figure 1)

insert Figure 1

Several additional operating characteristic measures of accuracy are implemented (Lam-

bert and Lipkovich (2008)): The Youden Index (J), Total Accuracy (TA), and Matthews

Correlation Coefficient (MCC). Besides, the total and weighted misclassification errors are

presented (TME and WME). Similarly to the sensitivity and specificity, these accuracy

and error measures can be used to define the optimal cut-off value. More precisely, the Total

Accuracy measure is defined as the proportion of cases correctly predicted:

TA =
TP (C) + TN(C)

T
, (13)

the Youden Index by:

J = HR(C)− FAR(C), (14)

and Matthews Correlation Coefficient as:

MCC =
TP (C) ∗ TN(C)− FP (C) ∗ FN(C)√

((TP (C) + FN(C)) ∗ (TP (C) + FP (C)) ∗ (TN(C) + FP (C)) ∗ (TN(C) + FN(C)))
.

(15)

At the same time, the misclassification errors are calculated as follows:

TME = FN(C) ∗ Lfn + FP (C) ∗ Lfp, (16)

WME =
FN(C) +Wfn

T
+
FP (C) +Wfp

T
, (17)

where Lfn are the losses associated with crisis periods categorized as tranquil (Lfn = 1/ND),
8



Lfp are the losses associated with calm periods identified as crises (Lfp = 1/NND), and

where Wfn and Wfp are weights based on the relative losses: (Wfn = Lfn/(Lfn + Lfp), and

(Wfp = Lfp/(Lfn + Lfp)).

As a result, it is possible to determine for each country an optimal cut-off for which the

accuracy measures are maximized and the error measures are minimized.

3.1.2 Evaluation Criteria

Further, we are giving more details of the performance assessment criteria previously

mentioned at the beginning of this subsection. To start with, we can formally introduce

Kuiper’s score (Granger and Pesaran (2000)), as the difference between the proportion of

crises correctly predicted (HR) and the proportion of tranquil periods incorrectly forecasted

(FAR):

KS = HR− FAR. (18)

The model above generates more hits (crises well identified) than false alarms if the value of

Kuiper’s score is positive.

The Quadratic Probability Score (QPS) is a mean square error measure which compares

the predicted probabilities of the two states (crisis/ non-crisis) with the real crisis indicator.

It is defined as:

QPS =
1

T

T∑
t=1

2(Pt − yt)2, (19)

where Pt represents the estimated probability of crisis at time t and yt is the realization of

the crisis event at time t. QPS takes values from 0 to 2, with 0 being perfect accuracy.

The Log Probability Score (LPS) loss function penalizes large errors more heavily than

QPS:

LPS = − 1

T

T∑
t=1

((1− yt)ln(1− Pt) + ytln(Pt)). (20)

It ranges from 0 to ∞, with LPS=0 being perfect accuracy.

The ROC curve is a visual tool whose concavity is equivalent to the conditional pro-

babilities of crisis being a decreasing function of the underlying scores. Its objective is to

minimize the misclassification and maximize the overall hit rate of the model. More exactly,

the ROC curve is a graphic of the sensitivity against 1− specificity for different values of

the cut-off and is represented in Figure 2. The curve of the perfect model passes through the

point (0,1), recognizing perfectly the crisis and non-crisis periods as they really are.

insert Figure 2
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The Area Under the ROC curve, AUC, which ranges from zero to one, provides a mea-

sure of the model’s overall ability to discriminate between the cases correctly predicted and

the false alarms. The larger the AUC, the better the model. This statistic can be calculated

as A =
∫ 1

0
HR(FAR)d(FAR), and its value corresponds to the Wilcoxon-Mann-Whitney

ranking statistic. In other words, the AUC estimates the probability that a randomly chosen

crisis observation is ranked higher than a non-crisis observation. Thus, a perfect ranking

means that all crisis observations are ranked higher than the non-crisis observations, and

consequently it implies an AUC equal to 1. By contrast, the expected value of the AUC

statistic for a random ranking is 0.5.

The Pietra Index is another ROC measure which quantifies half of the maximal dis-

tance between the ROC and the diagonal of the unit square. Like the AUC, the Pietra

Index does not depend on the crisis probability of the sample. Geometrically, in the case of

a concave ROC curve, we obtain the following representation of the statistic:

Pietra Index =

√
2

4
max
C
|HR(C)− FAR(C)|. (21)

Last but not least, the Bayesien Error rate (or classification error) criteria returns the

minimum probability of error for a binary case model. It can be estimated parametrically or

non-parametrically, but in the case of a concave ROC curve the error rate can be expressed

as:

Error rate = min
C

(PD(1−HR(C)) + (1− PD)FAR(C)), (22)

where PD represents the rate of crisis in the sample ( PD = ND/T ).

3.2 Comparison Tests

At this stage, we have set up rules to obtain an optimal cut-off, as well as forecast

evaluation. While most of the other studies would stop at this stage, and select the model

providing the best forecast evaluation, we think it is necessary to develop a suitable statistical

framework to test for the forecasting equivalence between 2 models with respect to the

evaluation measure.

Accordingly, we will use three such tests, namely the DM statistic for non-nested models

(Diebold-Mariano, 1995), Clark and West (2007) statistic ’MSPE-adj’ for nested models, and

a test of comparison of correlated ROC curves (DeLong et al., 1988).

The first test is the one proposed by Diebold and Mariano (1995) which can be built on

any criteria, such as MSFE or MAE, or even loss functions.

Let us consider two forecasts at a horizon k, ŷ1,t+k , and ŷ1,t+k, t ∈ {1, ..., T} of the time
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series yt , obtained from two concurrent models. Now, let the forecast errors for the two

models be {ê1,t}Tt=1, and {ê2,t}Tt=1. We denote by g(êt) the loss function associated with a

forecast et. Now, we can formulate the null hypothesis of equal forecast accuracy:

H0 : E[g(ê1,t)] = E[g(ê2,t)], (23)

or

H0 : E(dt) = 0, (24)

where dt represents the loss differential: dt = g(e1,t)− g(e2,t).

In this paper Diebold-Mariano’s test is based on the loss differential mean d = (1/T )
∑T

t=1 dt.

Under the null hypothesis d follows a normal distribution with a variance equals to σ2
d̄,0
/T ,

where σ2
d̄,0

is the long term variance of the loss differential:

DM =
d̄√

var(d̄)/T
=

d̄

σd̄,0
√
T

d−−−→
T→∞

N(0, 1). (25)

The long term variance can be obtained by using a kernel estimator which corresponds to a

weighted sum of future and past autocovariances of the loss differential dt. In the case of an

uniform kernel, as chosen by Diebold and Mariano(1995), the long term variance estimator

has the following form:

σ2
d̄,0 =

k−1∑
t=−(k−1)

γ̂d(j) = γ̂d(0) + 2
k−1∑
t=1

γ̂d(t), (26)

where γ̂d(t) = (1/T )
∑T

i=t+1(di− d̄)(di−t− d̄) is the empirical autocovariance of order t of dt.

Dielbod and Mariano (1995) highlight that the auto-covariances can be at most of order

k − 1, where k is the forecast horizon. Therefore, in case of a one step ahead forecast the

variance estimator is given by the empirical variance of the loss differential γ̂0(t). In addition,

since there is no particular loss function that we could use in the case of dichotomous

dependent variables, we decide to consider the MSFE measure as the comparison criterion

of the models. As a result, we have g(ê1,t) = ê2
1,t and g(ê2,t) = ê2

2,t. The rest of the formulas

can be obtained by a simple substitution.

Even if this test is appealing in our analysis, it cannot be implemented when models are

nested. In such a case the distribution under the null hypothesis could not be established

anymore. An appropriate alternative test has been suggested by Clark et McCracken (2001)

and Clark and West (2007).
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Let us consider that model 1 is the parsimonious one and model 2 is the larger one, which

reduces to model 1 if some of its parameters are set to 0. We remind that the sample size is

T . Besides, the k step ahead forecasts of the two models are denoted ŷ1,t+k and ŷ2,t+k.

The null hypothesis is equal MSPE, while the alternative is that the unrestricted model

(model 2) has a smaller MSPE than the restricted one (model 1), i.e. it performs better than

the other one.

Consequently, we can compute Clark and West (2007) MSPE-adj. statistic as:

MSPE-adj. =

√
T f̄√
V̂
, (27)

where f̂t+k = (yt+k− ŷ1,t+k)
2− [(yt+k− ŷ2,t+k)

2− (ŷ2,t+k− ŷ1,t+k)
2], f̄t+k is the sample average

of f̂t+k and V̂ is the sample variance of (f̂t+k − f̄) . This one-sided test uses critical values

from the standard normal distribution.

The last test to use is DeLong et al. (1988) which presents a nonparametric analysis

of areas under correlated ROC curves, by using the theory on generalized U-statistics to

generate an estimated covariance matrix. The null hypothesis is the equality of areas under

the ROC (L ∗ ÂUC ′ = 0), i.e. none of the models performs better than the others.

Then, we can introduce the test statistic as having the following form:

(ÂUC − AUC)L
′
[L(

1

ND

S10 +
1

NND

S01)L
′
]−1L(ÂUC − AUC)

′
, (28)

where the vector of statistics ÂUC represents the estimated area under the ROC curve for

h different models, ÂUC = (ÂUC1, ÂUC2, ...ÂUCh), L is the coefficients vector (row), and

S10 and S01 are two components of the covariance matrix for ÂUC, defined on the basis of

Hoeffding (1948)’s theory for generalized U-statistics, so that

S =
1

ND

S10 +
1

NND

S01. (29)

This statistic has a χ2 distribution with df degrees of freedom, where df is given by the rank

of LSL
′
. In addition, we remind that in small samples the power of the test is likely to be

small.

4 Data

Before going on with the model comparison, it is important to look at the data as well

as some specification problems (such as the way to build the binary variable and the data



poolability).

4.1 Data

Following Berg et al. (2008), we consider a database of 12 countries7 for which we have

obtained monthly data in US dollars adjusted for seasonality, from January 1985 to January

2005 from the IMF-IFS database or national banks of the countries via Datastream.

We act in accordance with the choices of Lestano et al. (2003) in selecting the econo-

mic variables and then we reduce the impact of extreme values as Kumar et al. (2003).

Accordingly, we consider explanatory variables from three economic sectors:

1. External sector: one-year growth rate of international reserves, of imports and exports,

M2 to foreign reserves, and one-year growth of M2 to foreign reserves.

2. Financial sector: one-year growth of M2 multiplier, one-year growth of domestic credit

over GDP, real interest rate, lending rate over deposit rate, one-year growth of real bank

deposits, and real interest rate differential.

3. Domestic real and public sector: one-year growth of industrial production.

In addition, we test the capability of the market expectation indicators to explain the

occurrence of currency crises by introducing the yield spread and the stock market price

index into the model. The term spread is defined as the difference between the money rate

and the long term government bonds. In case of missing data, proxies like ’money ten days’,

’interbank one year rate’ or ’money 364 days’ were used. As in Kumar (2003), we dampen

every variable using the formula: f(xt) = sign(xt) ∗ ln(1 + |xt|). Traditional first generation

(Im, Pesaran, Shin, 1997) and MW (Maddala and Wu 1999) and second generation (Bai et

Ng, 2001 and Pesaran, 2003) panel unit root tests are performed, leading to the rejection of

the null hypothesis of stochastic trend except for the lending rate over deposit rate indicator.

Hence, this series is substituted by its first difference.

Finally, we identify the most correlated leading indicators: real interest rate is highly

correlated with real interest rate differential, while one-year growth of imports is strongly

correlated with one-year growth of industrial production and with one-year growth of exports.

Based on the minimization of the AIC and BIC information criteria of the panel data models,

we identify the best two variables, namely real interest rate and one-year growth of industrial

production. The gaps through the series are replaced with the mean values, but when series

revealed missing values at the beginning of the sample, such as ”one-year growth of terms

of trade” or ”yield spread”, the corresponding observations are dropped from the analysis,

leading to the unbalanced framework mentioned earlier.

7Argentina, Brazil, Mexico, Peru, Uruguay, Venezuela, Indonesia, South Korea, Malaysia, Philippines,
Taiwan and Thailand
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4.2 Dating currency crises

A crisis episode is generally detected if an index of speculative pressure exceeds a certain

threshold. Many alternative indexes have been developed and used for identifying crises.

But they are all non-parametric termination rules which take into consideration the size

of the movements in a combination of a number of series. Lestano and Jacobs (2004) have

compared several currency crisis dating methods, aiming to spot the one that recognizes most

of the crises categorized by the IMF. Finally, they conclude that KLR modified index, Zhang

original index (Zhang, 2001), and extreme values applied to KLR modified index perform

best.

Following their results, we identify crisis periods using the KLR modified pressure index

(KLRm), which, unlike the KLR index, also includes interest rates:

KLRmn,t =
∆en,t
en,t

− σe
σr

∆rn,t
rn,t

+
σe
σi

∆in,t, (30)

where en,t denotes the exchange rate (units of country n’s currency per US dollar in per-

iod t), rn,t represents the foreign reserves of country n in period t, while in,t is the inter-

est rate in country n at time t. Meanwhile, the standard deviations σX are actually the

standard deviations of the relative changes in the variables (σ(∆Xn,t/Xn,t)), where X denotes

each variable at a time: the exchange rate, the foreign reserves, and the interest rate, and

∆Xn,t = Xn,t −Xn,t−6.8

Nonetheless, for both subsamples the threshold equals two standard deviations above the

mean9:

Crisisn,t =

1, if KLRmn,t > 2σKLRmn,t
+ µKLRmn,t

0, otherwise.
(31)

From a macroeconomic point of view, it is more important to know if there will be a

crisis in a certain horizon than in a certain month, because it allows the state to take steps

to prevent the crisis. Consequently, we define for each country C24t which corresponds to yt

from our general framework, as the crisis dummy variable taking the value of one if there

8Additionally, we take into account the existence of a higher volatility in periods of high inflation, and
consequently the sample is split into high and low inflation periods. The cut-off corresponds to six month
inflation rate higher than 50%.

9In the case of KLR the threshold equals three standard deviations, but then Taiwan would never register
any currency crises, which historically is not true (e.g. Taiwan was not exempted by the Asian crisis in 1997).
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will be a crisis in the following 24 months and taking the value of 0 otherwise10:

C24n,t =


1, if

24∑
j=1

Crisisn,t+j > 0

0, otherwise.

(32)

It is important to note that in the case of Markov switching model, since the two regimes

are identified intrinsically by the model, we use the KLRm index as a continuous variable,

without transforming it into a binary one. Nevertheless, the identification of crisis dates

concerns us from the viewpoint of forecast evaluation criteria and model comparison tests.

4.3 Optimal country clusters

Berg et al. (2008) have pointed out the importance of applying a panel-logit model only

on clusters made of statistically poolable countries. In order to identify these countries , we

use Kapetanios recursive procedure (Kapetanios, 2003) based on a traditional Hausman test

(see Appendix 3).

Unsurprisingly, four optimal clusters are identified: Argentina, Brazil, Mexico, Venezuela ;

Peru and Uruguay ; Korea, Malaysia, Taiwan ; Philippines and Thailand and one not poolable

country, Indonesia, confirming the fact that in different countries there are different factors

explaining currency crises. Actually, we were expecting to see clusters of countries smaller

than the regional sample (Latin America and respectively South Asia), since they experienced

similar macroeconomic events (high inflation rates, reforms and stabilization plans) and they

are linked by strong trading relations.

In search of comparable results, we shall use the five11 previously identified clusters for

all panel and time-series data models developed in this paper.

5 Empirical results

As aforementioned, the aim of this paper is to find the model that best identifies cri-

sis periods as crises and calm periods as calm periods. In order to do this, we use both a

panel logit and a Markov switching framework. More exactly, we develop several specifica-

tions for each of the two approaches: a logit model without market expectation variables

and one including also market expectation variables, two Markov models without market

expectation variables (one with intercept and standard error switching coefficients and one

10The whole exercise is performed with C12 in order to test for the robustness of the approach in appendix
2. It results that outcomes are similar.

11We consider the non-poolable country (Indonesia) as an individual cluster. Therefore, five optimal clus-
ters are identified.



including an international reserves - hereafter resg switching coefficient as well), and three

Markov models with market expectation variables (one with intercept and standard error

switching coefficients, a second one which also includes an international reserves switching

coefficient, and a third one including a yield spread - hereafter spread switching coefficient

apart from the two previously mentioned). Then, for each model we opt for the following

4-steps approach:

First, each model is estimated so as to obtain the country probability at time t of having

a crisis in the following 24 months.

Second, we apply the backtesting methodology based on credit-scoring criteria so as to

identify the optimal cut-off.

Third, the predictive performance of each model is scrutinized.

Finally, comparison tests are implemented to find the outperforming model.

5.1 Estimation, optimal cut-off and performance assessment

In this section we analyze the estimation results of our models, and for a given model we

identify the optimal cut-off and compute the values of the performance assessment criteria

for each of the twelve countries. Since we study numerous specifications, the results are only

partially reproduced in the paper, the rest of them being available upon request.

insert Tables 2 and 3

Tables 2 and 3 show the Maximum Likelihood estimates of the logit model with market

expectation variables for each of the five optimal clusters. The goodness of fit indicators

reveal that the independent variables have an important explanatory power for all clusters.

Moreover, the signs of the coefficients tend to correspond to the a priori expectations. No-

netheless, we encounter some variations from one cluster to another which concerns both

the significance and the sign of the parameters. Therefore, we can say that we find evidence

of parameter heterogeneity between optimal clusters. To be more precise, only the growth

of international reserves and the growth of M2 to reserves coefficients are always negative,

indicating that a rise of one unity of their value implies a reduction in the crisis probabi-

lity. Besides, the signs of the coefficients for variables like growth of domestic credit over

GDP, growth of stock market price index, or yield spread are relatively stable across the five

clusters (only one of the signs differs).

At the same time, we identify the variables growth of real bank deposits, growth of M2

to reserves and yield spread as being the most significant across clusters. On top of that,

the yield spread variable is significant only in the case of the last three clusters (South-

Asian countries), which indicates the importance of forward information to predict crises.
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These results provide support for second generation models, stressing the importance of non

fundamental factors in the occurrence of financial turmoil.

insert Figures 3 and 4

Figures 3 and 4 report the probabilities of crisis obtained from the two logit models. For

Brazil, Indonesia, Korea, Taiwan and Thailand the probabilities of crisis obtained using a

logit model with market expectation variables are most of the time superior to those obtai-

ned from a simple logit model. On the contrary, for Latin American countries (Argentina,

Malaysia, Mexico or Venezuela) probabilities of crises are quite close whatever the considered

model. Finally, for Peru, Philippines and Uruguay, the comparison is uneasy as each model

overcomes its competitor on particular periods. In other words, there are countries for which

the model with market expectation variables seems better than the other one, and there are

countries for which it is difficult to identify any permanent differences in the forecast of crisis

probabilities and consequently it is hard to choose the best model. Nevertheless, the simple

logit model is never the most adequate model for the whole period.

Generally speaking, all currency crisis episodes are forecasted quite well by these two mo-

dels. For example, warning signals of the Asian crisis are already apparent in 1995 in some of

the concerned countries, and the 2002 Argentinean depreciation, the Brazilian crisis in 1999,

the Mexican peso crisis in 1994-1995, and the Peruvian crisis in 1999 are anticipated with at

least one year in advance. On the contrary, neither the 2002 currency crises in Venezuela, nor

the 1997-1998 crisis in Thailand, or the 1998-2000 crisis in Philippines were foreseen in due

time. We must add, though, that sometimes these models identify depreciations which were

not quantified as crises by our KLRm pressure index, since they appear at the beginning of

the estimation sample (e.g. January 1995 in Argentina, 1995 in Brazil, 1992-1994 in Malay-

sia, etc.). Nevertheless, all currency crisis episodes pointed at by these models have already

been recorded and analyzed by other studies (see Abiad, 1993, and Dabrowski, 2003).

Last but not least, all variables with the exception of the growth of domestic credit

over GDP are significant in at least one model. Moreover, the use of robust standard errors

has a certain effect on the significance of the coefficients, since some variables are no more

significant whereas others are becoming highly significant.

The results of the simple logit model are quite similar to those of the logit model with

market expectation variables in terms of sign and significance of the common coefficients. At

the same time, the Markov models are characterized by a large variability in terms of sign

and significance of the coefficients of the independent variables 12.

In order to analyze the performance of each model, the optimal cut-off C has to be

estimated for each country. As explained in section (3.1), we use two graphical tools: one

12These results are available upon request from the authors
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based on the sensitivity-specificity indicators, and one based on several accuracy and error

measures. Moreover, to compare our results with the existing literature, we indicate in the

last column, the cut-off obtained using NSR.

insert Tables 4 and 5

Tables 4 and 5 report the cut-off obtained for each country. We put in bold the ones

which maximize both sensitivity and specificity. It is noticeable that most of the time the

optimal cut-off is the one obtained by the accuracy measures. Moreover, cut-off obtained

by NSR (reported as KLR) is always higher than the one resulting from the two other

methods. It reveals that existing studies are much more conservative than the current one.

Concerning the models, the panel logit leads to a cut-off varying between 0.08 and 0.38,

whereas for Markov models it is higher (0.7-1). These results highlight that the use of a

predetermined cut-off may induce some loss of information and disturbances in the measure

of the forecasting performance of the models.

Most importantly, the sensitivity and specificity values seem higher for logit models than

for Markov ones ; in the first case we always deal with more than 60% of cases correctly

identified (see table 4), while in the second case, this rate is lower, reaching even 0% in some

cases (see table 5). In fact, there are even two models (Markov model with resg switching and

Markov model with market expectation variables and resg switching) delivering a constant

cut-off of 0.9995 and with sensitivities (specificities) of 0% (100%) for all countries.

At the same time, the market expectation logit model leads to higher sensitivity and

specificity values for the South-Asian countries than the simple logit model, while the simple

logit has higher values for the Latin-American countries, emphasizing the idea that the

currency crises of the Asian countries can be better predicted by using market expectation

variables. It confirms our previous results of the forward looking specificity of the asian crisis.

On the other hand, in the case of Markov models, the role of market expectation variables

is not so clearly supported by the results.

It seems that logit models, in spite of their autocorrelation problem, appear to over-

perform Markov models. Similarly, market expectation variables turn out to have a more

clear effect when introduced in a logit models. In the next subsection the proper statistical

assessment criteria of the performance of each model is presented.

5.2 Evaluation criteria

The following statistics assess the performance of a model based on the sensitivity-

specificity measures (AUC, Kuiper score, Pietra index, Bayesian error rate) or by comparing

the forecasts with the realizations of the crisis variable C24 (QPS, LPS). Therefore, the

higher the AUC the better the model will be. A positive value of Kuiper’s score signifies
18



that the model generates more hits than false alarms and so its predictive performance will

increase. Similarly, a higher Pietra index, respectively a lower Bayesian error rate indicate a

more stringent model, as well as values of the QPS and LPS closer to zero.

insert Table 6

From Table 6, it turns out that the logit model exhibits correct predictive properties:

AUC is higher than 0.731, Kuiper score is always positive, Pietra index values are greater

than 0.145, Bayesian error rate is inferior to 0.272, the absolute value of QPS is less than

0.37 and the absolute value of LPS is less than 0.558. The results of the two models (with or

without forward looking variables) are quite similar, with small differences from one country

to another.

Concerning Markov models, the results are less satisfactory. First of all, the two models

with switching resg are not very different from a random model in terms of performance13: the

AUC criteria equals very frequently 0.5, Kuiper’s score and Pietra index are very small, while

the Bayesian error rate, QPS and LPS are high. Second, the other three models (without

resg switch) have similar behavior (see table 6), and clearly outperform the first two (with

resg switch). Nevertheless, we get the overwhelming feeling that Markov specifications are

dominated by panel logit in terms of forecasting performances. Still, it has to be confirmed

by proper statistical test. This will constitute the last part of our analysis.

5.3 Comparison Tests

In order to determine the best model specification, the three tests presented in section

3.2 (the first one compares the area under the ROC curve, the second one <Clark-West

MSPE-adj> compares the forecasts of two competitive nested models, while the third one

<Diebold-Mariano DM statistic> compares the forecasts of two non-nested models) are

implemented.

The results of the ROC and Clark-West tests comparing the simple logit without and with

market expectation variables is presented in Table 7. It corroborates the idea that forward

looking variables matter for crisis prediction. In fact, this conclusion is not surprising at all

as it matches the results obtained with the predicted probability plots.

insert Table 7

In the case of Markov models, the differences between models are not always clear. For

example, for countries like Indonesia, Korea, Malaysia, Mexico, Markov model with market

expectation variables is outperforming the one with forward looking variables whereas for

Brazil, Indonesia, Peru and Uruguay, an opposite conclusion is reached.

13These results are available upon request.
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insert Table 8

Finally, the last step in the procedure of predictive ability consists in comparing the logit

model with market expectation variables to the Markov model with market expectation

variables and spread switching. Results reported in Table 8 indicate that the two tests are

always significant, leaving no doubt concerning the choice of the panel logit as the best

model. Thus, we can clearly conclude that the outperforming model is the logit model with

market expectation variables. Moreover, a sensitivity analysis of the Logit model with market

expectation variables (see appendix 2) proves the robustness of this result.

6 Conclusion

This paper proposes to tackle both problems by developing a new statistical framework

to evaluate EWS. Inherited from the traditional credit-scoring measure (Lambert and Lipko-

vich, 2008), it goes beyond the simple analysis of the NSR analysis, and proposes a measure

of accuracy as well as a sensitivity and specificity analysis. It is then possible to determine

the optimal threshold for each country, relying on the sensitivity-specificity plot. Similarly,

we adapt the most important credit-scoring criteria (e.g. AUC, Kuiper Score, Pietra Index,

Bayesian Error Rate) using them as evaluation criteria of the performance of the model spe-

cifications we have developed. Finally, nested and non-nested comparison tests are developed

to identify the optimal specification.

It results from this approach an unified framework to compare candidate EWS models.

Applied to compare the predictive power of a panel logit and Markov frameworks, it leads to

several conclusions. First the Panel logit is outperforming the Markov based EWS. Second,

the introduction of forward looking variables (here the term spread) clearly improves the

forecasting properties of the EWS. It thus confirms the adequacy of the second generation

crisis models in explaining the occurrence of crises. Third, the optimal EWS based on logit

model with market expectation variables predicts quite well most currency crises in the

specified emerging markets (it forecasts correctly at least 67.9% of crises and 61% of calm

periods in each of the twelve countries). The very good forecasting performance of this model

and its robustness to some sensitivity analysis provides a dominating position within EWS

models for logit model with market expectation variables.

Such a conclusion is of course conditional to our specification. Hence it calls for deeper em-

pirical applications relying on some hypotheses (two-regime model, with autoregressive and

volatility regime dependent model,..) and including extra forward looking variable (market

feeling,..). Nevertheless, our evaluation procedure provides an unified framework to compare

EWS models and clearly indicate a research direction to follow.
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Appendix 1 : A Robust Estimator of the Variance of the

Parameters

As previously mentioned, we use a sandwich estimator in order to compute robust esti-

mators of the variance in the case of the logit models. Technically, we know that the matrix

of variance of the estimators is asymptotically equal to the inverse of the hessian matrix:

V(β̂) = −H(β̂)−1. Still, this works only if we use the real Data Generating Process. Since

we want a more permissive method from this point of view, we define the variance vector as

follows:

V(β̂) = (−H(β̂)−1)V(g(β̂))(−H(β̂)−1), (33)

where H(β̂)−1 is the inverse of the hessian matrix, and V(g(β̂)) is the variance of the gradient.

Using the empirical variance estimator of the gradient we find that:

V(β̂) = −T/(T − 1)H(β̂)−1{
T∑
t=1

gt(β̂)gt(β̂)−1}(−H(β̂)−1), (34)

which is a robust variance estimator for the time-series model.

The main advantage of this sandwich method is that it can also be applied in the case

of grouped data, as in our case. It is important to note that in the current situation each

country from a cluster is a group of time-series observations which are correlated. Thus, the

observations corresponding to a country are not treated as independent, but the countries

themselves, forming the analyzed cluster, are considered independent. Therefore, instead of

using gt(β̂), we use the sum of gt(β̂) for each country and T is replaced by the number of

countries in a cluster. These changes ensure the independence of the ”superobservations”

entering the formula (Gould et al. (2005)).
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Appendix 2 : Robustness Check of the Optimal Model

In this section we propose a sensitivity analysis of the performance of our best EWS for

currency crises.

Methodology

We decide to consider both a change in the dating currency crises method and in the

crisis definition. Therefore, instead of using the KLR modified pressure index (KLRm), we

will use Zhang original index (Lestano and Jacobs(2004)) :

Crisisn,t =


1, if


∆en,t

en,t
> β1σ

′
en,t

+ µen,t or

∆rn,t

rn,t
< β2σ

′
rn,t

+ µrn,t

0, otherwise.

(35)

where σ
′
e,t is the standard deviation of (∆en,t/en,t) in the sample of (t-36, t-1), and σ

′
r,t is

the standard deviation of (∆rn,t/rn,t) in the sample of (t-36, t-1). The thresholds are set

to β1 = 3 and β2 = −3. We can notice that unlike the KLRm index, the interest rates are

excluded from the Zhang index and the thresholds used are time-varying for each component.

Regarding the crisis definition, this time we will define C12 as taking the value of 1 if

there is a crisis in the following 12 months, and the value of 0 if there is no crisis in the next

12 months :

C12n,t =


1, if

12∑
j=1

Crisisn,t+j > 0

0, otherwise.

(36)

Empirical Results

For the first test of robustness, Zhang’s currency crisis (ZCC) Index is used instead

of KLRm. For the second robustness check, KLRm pressure is maintained, but instead of

considering a horizon of 24 months, we fix it to 12 (C12). The same evaluation procedure as in

the main text is followed. The estimation of the models looks like the one of the original logit

model with market expectation variables in terms of global goodness of fit, parameter’s sign

and significance. Still, there are some differences, especially when considering ZCC index :

Significant variables are less numerous and different compared to the original model , i.e. M2

to reserves, Growth of stock market price index, a more intense variability of the parameter’s

signs from one cluster to another, etc.. On the contrary, the results obtained with C12 is

identical to the one derived from the initial logit model with market expectation variables.
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Moreover, the spread variable is significant for all the Asian clusters, like in the case of the

optimal model, whereas in the ZCC experiment, this variable is significant only for the first

Asian cluster (Korea, Malaysia and Taiwan).

The optimal cut-off value for each country is reported in Table 9. It appears it is almost

always given by the accuracy criteria. Besides, the cut-off values are all inferior to 0.35

(except for Uruguay). The sensitivity and specificity values of the three models are quite

similar, and for some countries like Mexico, Peru or respectively Argentina, Korea, Malaysia,

Peru, Philippines, Thailand, Uruguay, Venezuela they are even better than those obtained

with the original model.

The idea that these two models aiming to check the robustness of our optimal specification

are similar and even slightly better (for some countries) than the initial one, is supported by

the performance assessment criteria used (see Tables 10 and 11). For countries like Malaysia,

Philippines, Taiwan, Thailand, Uruguay and Venezuela, the AUC and the Pietra index for

the two ”robust” models are constantly higher than for our optimal model, and the Bayesian

error rate, the QPS and the LPS are lower. When considering only the C12 method, the

following countries can be added to the same category : Argentina, Korea, and Peru.

It turns out that our optimal specification is robust.
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Appendix 3 : Kapetanios’ (2003) Recursive Procedure

Considering a panel logit data model Pr(ynt = 1) =
exp(β

′
x+fn)

1+exp(β′x+fn)
∀n ∈ Ωh , n ∈

{1, ..., N}, t ∈ {1, ..., T}, we can write the null hypothesis : βn = β ∀n. Therefore, in terms

of estimation we have : β̂n = β̂, ∀n, where β̂n is the (q, 1) vector of the parameters estimates

resulted from the logit model for the nth country, while β̂ is the (q, 1) vector of the parame-

ters estimates obtained from the panel logit model, knowing that q represents the number

of explicative variables in the model. Thus, an Hausman type statistic can be written in the

following form :

ST,n = (β̂n − β̂)
′
V (β̂n − β̂)−1(β̂n − β̂). (37)

Consequently, we note SsT = sup(ST,n) the statistic testing our null hypothesis. Since the

accuracy of the time series estimators β̂n improves as T rises, for a low T the estimators

are not accurate and, on top of that, the variance of the estimators soars. In this case the

statistic ST,n tends not to reject the null hypothesis as often as it should, leading to erroneous

results. Actually, we face a small sample problem, because the ST,n statistics are sometimes

negative, so the asymptotical assumption that ST,n follows a χ2
q distribution fails.

The 5% critical values of SsT for different n and q is supplied by the author. If the test

does not reject the null hypothesis, the dataset is ready to use in a panel framework, but if

the null hypothesis is rejected, the country with the highest statistic (ST,n has to be dropped

and the procedure must start over again with the remaining countries. For more technical

details see Kapetanios (2003).
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Fig. 1 – Optimal Cut-off determination

Fig. 2 – The ROC curve
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(a) Argentina (b) Brazil

(c) Indonesia (d) Korea

(e) Malaysia (f) Mexico
Fig. 3 – Predicted probability of crisis
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(a) Peru (b) Philippines

(c) Taiwan (d) Thailand

(e) Uruguay (f) Venezuela
Fig. 4 – Predicted probability of crisis (continued)
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Tab. 2 – Estimation results of a logit model with market expectation variables

cluster 1 cluster 2 cluster 3

Indicator Coef. Robust Std. Err. Coef. Robust Std. Err. Coef. Robust Std. Err.

Growth of international reserves -1.426 2.374 -0.817 3.452 -9.190 1.327

Growth of mm2 multiplier -1.136 4.411 8.192 0.359 -3.678 4.565

Growth of domestic credit over GDP -2.787 3.770 2.594 5.469 4.756 6.983

Real interest rate 18.72 6.125 41.04 21.37 -4.248 17.56

First difference of lending rate over deposit rate 0.631 0.284 -0.374 0.660 -0.868 0.526

Growth of real bank deposits -2.809 0.822 -2.699 5.698 4.572 0.260

M2 to reserves 3.454 1.704 -20.35 4.448 25.25 4.002

Growth of M2 to reserves -.739 0.562 -10.02 1.796 -11.16 1.369

Growth of industrial production 1.769 1.218 -1.813 5.903 5.198 4.655

Growth of stock market price index 0.549 1.068 2.755 0.403 0.376 1.240

Yield Spread 0.299 0.358 -0.234 0.439 -1.545 0.343

Likelihood Ratio 140.644 147.501 234.707

Log pseudolikelihood -129.995 -58.3494 -150.614

Pseudo R2 0.35110 0.55830 0.43790

AIC 281.991 138.699 323.228

SC 327.718 177.213 371.202

Tab. 3 – Estimation results of a logit model with market expectation variables (continued)

cluster 4 cluster 5

Indicator Coef. Robust Std. Err. Coef. Robust Std. Err.

Growth of international reserves -0.287 2.308 -12.23 14.06

Growth of mm2 multiplier 1.822 8.984 23.50 11.82

Growth of domestic credit over GDP 0.527 2.389 7.981 5.727

Real interest rate -1.731 6.259 11.38 20.06

First difference of lending rate over deposit rate -0.592 0.465 4.410 10.50

Growth of real bank deposits 0.165 1.073 38.47 10.63

M2 to reserves 4882 354.0 6.14 ∗ 106 4.6 ∗ 106

Growth of M2 to reserves -2.107 3.149 -40.04 31.90

Growth of industrial production -4.242 0.336 -41.16 21.14

Growth of stock market price index -1.155 2.388 4.716 4.308

Yield Spread -0.221 0.018 -4.157 1.614

Likelihood Ratio 67.5548 159.626

Log pseudolikelihood -191.503 -12.6918

Pseudo R2 0.14990 0.86280

AIC 405.006 49.3840

SC 449.809 89.9420
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Tab. 4 – Optimal cut-off identification in a Logit model with market expectation variables

Accuracy measures Sensitivity-Specificity graphic KLR

Country Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity Cut-off

Argentina 0.300 82.76 82.61 0.300 82.76 82.61 0.620

Brazil 0.160 100.0 69.47 0.250 80.77 81.05 0.880

Indonesia 0.200 96.97 96.20 0.210 96.97 96.20 0.930

Korea 0.206 85.71 90.96 0.170 85.71 85.31 0.930

Malaysia 0.380 93.10 93.97 0.370 93.10 93.10 0.730

Mexico 0.379 100.0 99.15 0.379 100.0 99.15 0.390

Peru 0.260 100.0 82.72 0.350 87.10 86.42 0.940

Philippines 0.400 64.10 82.01 0.346 67.95 68.35 0.730

Taiwan 0.160 94.12 65.17 0.228 76.47 76.97 0.670

Thailand 0.120 90.32 61.29 0.150 74.19 74.19 0.321

Uruguay 0.119 93.33 75.73 0.230 83.33 83.50 0.900

Venezuela 0.225 85.71 67.90 0.280 71.43 71.60 0.330

Note : For each country we choose the optimal cut-off from the values obtained by using two different methods (accuracy
measures and sensitivity-specificity graphic) as being the one that maximizes both sensitivity and specificity, usually giving
more weight to the correct identification of crisis periods (sensitivity). The selected cut-off values are in bold. For comparison
reasons, we also present the KLR cut-off which is obtained by minimising NSR (reported as KLR).

Tab. 5 – Optimal cut-off identification in a Markov model with market expectation variables
and spread switching

Accuracy measures Sensitivity-Specificity graphic KLR

Country Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity Cut-off

Argentina 0.990 51.72 36.96 0.990 51.72 36.96 0.987

Brazil 0.800 65.38 73.68 0.610 65.38 65.26 0.964

Indonesia 0.522 57.58 56.52 0.522 57.58 56.52 0.828

Korea 0.500 71.43 71.19 0.500 71.43 71.19 0.947

Malaysia 0.967 100.0 58.62 0.988 68.97 71.55 0.989

Mexico 0.923 50.00 51.28 0.923 50.00 51.28 0.922

Peru 0.860 41.94 59.26 0.85 100.0 <0.001 0.982

Philippines 0.928 60.26 66.19 0.910 61.54 61.87 0.926

Taiwan 0.952 64.71 42.70 0.980 50.98 50.56 0.953

Thailand 0.875 74.19 23.66 0.890 38.71 34.41 0.989

Uruguay 0.520 100.0 <0.001 0.527 33.33 26.21 0.524

Venezuela 0.988 82.14 29.63 0.989 17.86 58.02 0.988

Note : For each country we choose the optimal cut-off from the values obtained by using two different methods (accuracy
measures and sensitivity-specificity graphic) as being the one that maximizes both sensitivity and specificity, usually giving
more weight to the correct identification of crisis periods (sensitivity). The selected cut-off values are in bold. For comparison
reasons, we also present the Berg-Patillo cut-off which is obtained by minimising the noise-to-signal ratio.
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Tab. 6 – Evaluation criteria for a logit model with market expectation variables and a
Markov model with market expectation variables and spread switching

Country Model AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina
Logit 0.898 65.37 0.235 0.132 0.215 -0.325

Markov 0.625 -11.32 <0.001 0.239 1.492 3.558

Brazil
Logit 0.907 69.47 0.249 0.132 0.202 -0.311

Markov 0.710 39.06 0.142 0.215 0.765 1.057

Indonesia
Logit 0.996 93.17 0.330 0.0138 0.034 -0.058

Markov 0.685 14.10 0.114 0.129 0.567 0.607

Korea
Logit 0.920 76.67 0.273 0.0780 0.135 -0.228

Markov 0.748 42.62 0.164 0.136 0.682 0.909

Malaysia
Logit 0.985 87.07 0.311 0.048 0.083 -0.131

Markov 0.809 58.62 0.207 0.200 1.184 2.165

Mexico
Logit 0.998 99.15 0.350 0.008 0.011 -0.023

Markov 0.564 1.280 0.081 0.033 1.658 2.526

Peru
Logit 0.947 82.72 0.292 0.107 0.166 -0.266

Markov 0.529 <0.001 0.027 0.277 1.192 1.939

Philippines
Logit 0.739 36.30 0.163 0.235 0.368 -0.558

Markov 0.582 23.41 0.093 0.359 1.080 1.756

Taiwan
Logit 0.837 59.29 0.211 0.196 0.270 -0.399

Markov 0.511 7.410 0.028 0.223 1.467 3.085

Thailand
Logit 0.811 51.61 0.192 0.138 0.218 -0.348

Markov 0.592 -2.150 0.038 0.143 1.511 2.710

Uruguay
Logit 0.939 69.06 0.257 0.105 0.165 -0.246

Markov 0.725 <0.001 <0.001 0.225 1.186 2.023

Venezuela
Logit 0.777 53.61 0.189 0.257 0.370 -0.530

Markov 0.511 11.77 0.042 0.257 1.454 3.361

Note : The AUC criteria takes values between 0.5 and 1, 1 being the perfect model. Kuiper’s score should have positive values
if the model identifies well the crisis periods. Pietra index takes values from -0.354 to 0.354, the higher its level, the better the
model. Bayesian error rate takes values between 0 and 1, 0 corresponding to the perfect model. QPS ranges from 0 to 2, 0 being
perfect accuracy, while LPS ranges from 0 to ∞, 0 being perfect accuracy.

Tab. 7 – Comparison tests of Simple logit and Market expectation logit models

ROC Clark-West

Country test statistic p-value test statistic pvalue

Argentina 0.0301 0.8622 0.1372 0.4454

Brazil 5.7105 0.0169 3.4901 0.0002

Indonesia 7.9917 0.0047 4.4332 0.0000

Korea 4.5357 0.0332 3.7746 0.0001

Malaysia 0.3859 0.5345 0.3288 0.3711

Mexico <0.001 1.0000 0.6869 0.2460

Peru 0.0028 0.9577 2.1634 0.0153

Philippines 0.8738 0.3499 0.8709 0.1919

Taiwan 10.475 0.0012 3.5603 0.0002

Thailand 6.9801 0.0082 4.5964 0.0000

Uruguay 0.7443 0.3883 0.6656 0.2528

Venezuela 6.6647 0.0098 -2.0740 0.9810

Note : The null hypothesis of the ROC test is the equality of areas under the ROC curve, while the alternative hypothesis is
the statistical difference between the two areas. Its statistic follows a normal distribution whose critical values are ± 1.96 (5%).
The null hypothesis of the Clark-West test is the equality of predictive performance of the two models. The alternative indicates
that the non-constraint model (the bigger one) is better than the other one. Under the null hypothesis, the MSPE-adj statistic
follows a normal distribution with a critical unilateral value of 1.645(5%). Bold entries indicate significance at the 5% level.
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Tab. 8 – Comparison tests of market expectation logit and market expectation spread
switching markov models

ROC Diebold-Mariano

Country test statistic p-value test statistic pvalue

Argentina 62.678 <0.001 12.965 <0.001

Brazil 9.7859 0.0018 8.783 <0.001

Indonesia 46.529 <0.001 29.244 <0.001

Korea 9.8754 0.0017 12.207 <0.001

Malaysia 21.455 <0.001 17.066 <0.001

Mexico 17.829 <0.001 50.850 <0.001

Peru 45.942 <0.001 12.164 <0.001

Philippines 7.4266 0.0064 9.7129 <0.001

Taiwan 34.195 <0.001 16.591 <0.001

Thailand 45.902 <0.001 18.281 <0.001

Uruguay 125.00 <0.001 12.877 <0.001

Venezuela 17.351 <0.001 9.4665 <0.001

Note : The null hypothesis of the ROC test is the equality of area under the ROC curve, while the alternative hypothesis is
the statistical difference between the two areas. Its statistic follows a normal distribution whose critical values are ± 1.96 (5%).
The null hypothesis of the Diebold-Mariano test is the equality of predictive performance of the two models. The alternative
indicates that the first model is better than the other one. Under the null hypothesis, the teste statistic follows a normal
distribution. Bold entries indicate significance at the 5% level.

Tab. 9 – Optimal cut-off identification in a logit model with market expectation variables

Zhang method C12 method

Accuracy measuress Sensitivity-Specificity graphic Accuracy measuress Sensitivity-Specificity graphic

Country Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity Cut-off Sensitivity Specificity

Argentina 0.080 97.14 58.00 0.550 65.71 70.00 0.180 94.12 90.38 0.195 88.24 90.38

Brazil 0.330 100.0 68.09 0.438 76.32 78.72 0.060 92.86 61.68 0.080 71.43 71.03

Indonesia 0.200 100.0 100.0 0.200 100.0 1000 0.3500 100.0 100.0 0.3500 100.0 100.0

Korea 0.150 85.19 78.87 0.170 81.48 81.69 0.110 93.75 89.95 0.150 93.75 93.65

Malaysia 0.030 100.0 96.47 0.038 95.83 96.47 0.080 100.0 90.63 0.120 94.12 93.75

Mexico 0.320 79.17 78.69 0.340 79.17 80.33 0.225 100.0 98.29 0.225 100.0 98.29

Peru 0.020 75.00 73.61 0.020 75.00 73.61 0.110 94.74 91.40 0.260 94.74 94.62

Philippines 0.220 82.05 85.21 0.200 82.05 82.39 0.180 71.43 70.29 0.180 71.43 70.29

Taiwan 0.200 100.0 95.81 0.220 96.15 95.81 0.110 85.19 80.69 0.120 81.48 81.68

Thailand 0.200 100.0 64.8 0.350 78.57 78.4 0.120 94.74 83.84 0.160 89.47 88.89

Uruguay 0.685 26.79 95.2 0.700 91.53 89.47 0.300 94.44 97.39 0.120 94.44 93.91

Venezuela 0.240 92.86 68.8 0.450 79.31 81.82 0.060 100.0 58.06 0.140 75.00 75.27

Note : For each country we choose the optimal cut-off from the values obtained by using two different methods (accuracy
measures and sensitivity-specificity graphic) as being the one that maximizes both sensitivity and specificity, usually giving
more weight to the correct identification of crisis periods (sensitivity). The selected cut-off values are in bold.

33



Tab. 10 – Evaluation criteria for a logit model with market expectation variables (ZCC)

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina 0.797 55.14 0.195 0.259 0.389 -0.548

Brazil 0.895 68.09 0.241 0.176 0.274 -0.419

Indonesia 1.000 100.0 0.353 <0.001 0.001 -0.005

Korea 0.887 64.06 0.229 0.094 0.169 -0.282

Malaysia 0.999 96.47 0.341 0.009 0.025 -0.042

Mexico 0.878 59.5 0.213 0.188 0.279 -0.432

Peru 0.892 48.61 0.245 0.052 0.090 -0.154

Philippines 0.914 67.26 0.240 0.105 0.199 -0.339

Taiwan 0.994 95.81 0.339 0.031 0.046 -0.075

Thailand 0.88 64.80 0.229 0.177 0.267 -0.405

Uruguay 0.968 81.00 0.298 0.072 0.129 -0.214

Venezuela 0.897 61.66 0.257 0.151 0.256 -0.395

Note : The AUC criteria takes values between 0.5 and 1, 1 being the perfect model. Kuiper’s score should have positive values
if the model identifies well the crisis periods. Pietra index takes values from -0.354 to 0.354, the higher its level, the better the
model. Bayesian error rate takes values between 0 and 1, 0 corresponding to the perfect model. QPS ranges from 0 to 2, 0 being
perfect accuracy, while LPS ranges from 0 to ∞, 0 being perfect accuracy.

Tab. 11 – Evaluation criteria for a logit model with market expectation variables (C12)

Country AUC Kuiper score Pietra index Bayesian error rate QPS LPS

Argentina 0.956 84.50 0.299 0.049 0.095 -0.171

Brazil 0.861 54.54 0.203 0.083 0.153 -0.257

Indonesia 1.000 100.0 0.354 <0.001 0.002 -0.005

Korea 0.973 83.70 0.316 0.044 0.073 -0.113

Malaysia 0.992 90.63 0.327 0.021 0.045 -0.077

Mexico 0.996 98.29 0.347 0.008 0.017 -0.028

Peru 0.987 89.36 0.323 0.036 0.068 -0.115

Philippines 0.755 41.72 0.149 0.152 0.264 -0.425

Taiwan 0.898 65.88 0.233 0.087 0.142 -0.234

Thailand 0.945 78.58 0.279 0.059 0.105 -0.177

Uruguay 0.989 91.83 0.325 0.023 0.045 -0.092

Venezuela 0.823 58.06 0.205 0.138 0.224 -0.338

Note : The AUC criteria takes values between 0.5 and 1, 1 being the perfect model. Kuiper’s score should have positive values
if the model identifies well the crisis periods. Pietra index takes values from -0.354 to 0.354, the higher its level, the better the
model. Bayesian error rate takes values between 0 and 1, 0 corresponding to the perfect model. QPS ranges from 0 to 2, 0 being
perfect accuracy, while LPS ranges from 0 to ∞, 0 being perfect accuracy.
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